Surface appearance of dynamo-generated large-scale fields

نویسندگان

  • J. Warnecke
  • A. Brandenburg
چکیده

Aims. Twisted magnetic fields are frequently seen to emerge above the visible surface of the Sun. This emergence is usually associated with the rise of buoyant magnetic flux structures. Here we ask how magnetic fields from a turbulent large-scale dynamo appear above the surface if there is no magnetic buoyancy. Methods. The computational domain is split into two parts. In the lower part, which we refer to as the turbulence zone, the flow is driven by an assumed helical forcing function leading to dynamo action. Above this region, which we refer to as the exterior, a nearly force-free magnetic field is computed at each time step using the stress-and-relax method. Results. Twisted arcade-like field structures are found to emerge in the exterior above the turbulence zone. Strong current sheets tend to form above the neutral line, where the vertical field component vanishes. Time series of the magnetic field structure show recurrent plasmoid ejections. The degree to which the exterior field is force free is estimated as the ratio of the dot product of current density and magnetic field strength to their respective rms values. This ratio reaches values of up to 95% in the exterior. A weak outward flow is driven by the residual Lorentz force.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Can the turbulent galactic dynamo generate large - scale magnetic fields ?

Large-scale magnetic fields in galaxies are thought to be generated by a turbulent dynamo. However the same turbulence also leads to a small-scale dynamo which generates magnetic noise at a more rapid rate. The efficiency of the large-scale dynamo depends on how this noise saturates. We examine this issue taking into account ambipolar drift, which obtains in a galaxy with significant neutral ga...

متن کامل

Cyclic Evolution of Coronal Fields from a Coupled Dynamo Potential-Field Source-Surface Model

The structure of the Sun's corona varies with the solar-cycle phase, from a near spherical symmetry at solar maximum to an axial dipole at solar minimum. It is widely accepted that the large-scale coronal structure is governed by magnetic fields that are most likely generated by dynamo action in the solar interior. In order to understand the variation in coronal structure, we couple a potential...

متن کامل

Origin of coherent magnetic fields in high redshift objects

Large scale strong magnetic fields in galaxies are generally thought to have been generated by a mean field dynamo. In order to have generated the fields observed, the dynamo would have had to have operated for a sufficiently long period of time. However, magnetic fields of similar intensities and scales to the one in our galaxy, are observed in high redshift galaxies, where a mean field dynamo...

متن کامل

Acceleration of Plasma Flows Due to Inverse Dynamo Mechanism

The ”inverse–dynamo” mechanism — the amplification/generation of fast plasma flows by short scale (turbulent) magnetic fields via magneto–fluid coupling is recognized and explored. It is shown that large–scale magnetic fields and flows are generated simultaneously and proportionately from short scale fields and flows. The stronger the short–scale driver, the stronger are the large–scale product...

متن کامل

Magnetic flux concentrations from dynamo-generated fields

Context. The mean-field theory of magnetized stellar convection gives rise to two distinct instabilities: the large-scale dynamo instability, operating in the bulk of the convection zone and a negative effective magnetic pressure instability (NEMPI) operating in the strongly stratified surface layers. The latter might be important in connection with magnetic spot formation. However, as follows ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010